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FINITE-DEFORMATION CRACK IN AN INFINITE BODY
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Abstract-The anti-plane shear crack problem in an infinite body is studied within the context of
finite-deformation elastostatics. The governing equations are found to be identical to those of certain
previously studied small strain plastic problems under anti-plane shear. For a particular strain energy
function, an exact solution of the problem is obtained through use of results in the literature.

INTRODUCTION
Most solutions of crack problems are based on small strain theories of elasticity or plasticity.
Recently J. K. Knowles and E. Sternberg[l] considered a plane strain crack in a compressible,
elastic material under uniform tension at infinity. By taking finite deformation into account, they
have derived an asymptotic solution of the singular field near the crack-tip. However, they are
able to compute the amplitude of the singular field only for sufficiently low load levels such that
the nonlinear behavior is essentially confined to a region small compared to the crack length. In
the present paper, the simpler problem of the anti-plane simple shear crack in an incompressible
material is considered within the context of finite-deformation elasticity. It is found that, for a
particular form of the strain energy function, the problem is reduced to a form formally
identical to a problem solved by J. Amazigo[2], and, thereby, an exact solution is obtained.
Furthermore, the amplitude of the singular field near the crack-tip is rendered eompletely
determinate for arbitrary large deformations.

FORMULATION OF THE PROBLEM

Let Xi and Yi be the Cartesian coordinates of a typical point in the undeformed and deformed
body respectively and let Ui be the displacement components. By symmetry, the problem with
the infinite body is equivalent to the problem of a semi-infinite body with an edge crack in the
region '!lJ (see Fig. I).

In the absence of the crack, every point in this infinite body undergoes a simple shearing
deformation so that

a = 1,2 (1)

where 'roo is a constant. With the introduction of a crack, U3 becomes a function of XI and X2,

Fig. I. Geometry.
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and it is still assumed to be the only nonzero displacement component. So

(2)

The conditions at infinity remain the same as before, i.e.

U3.a = O. (3)

Let iT be the Cauchy stress field in the deformed body and define the displacement gradient
F, the Jacobian determinant J of the transformation y(x) and the Piola stress field T as

J = det (aYi ),
aXj

(4)

where the superscript T denotes transpose of the matrix. The traction-free boundary con
ditions, from [l], can be prescribed over the undeformed body in terms of the Piola stress
tensor Tjj referred to the original Cartesian coordinates, i.e.

T13=O on XI=-a, -oo<X2<oo

T23 = 0 on - a :5 XI:5 0, X2 =0 ±.

(5a)

(5b)

For a homogeneous, isotropic, incompressible material, the strain energy function W is a
function of the two principal invariants only, i.e.,

(6)

where II = tr(FTF), h = ![tr(FTFf - tr(FTF)2]. If W is assumed to be a function of II only, the
constitutive relation may be written as

(7)

where I = 2(d lt7dIt ) and p is the hydrostatic pressure.
It can be shown that [1] the Piola stress field satisfies the following equilibrium equation in

the undeformed region

~-O' t7><

a _In ;;v.
Xj

In view of (5a) and (7), (8) gives only one non-trivial equilibrium equation

Now define

(8)

(9)

a = 1,2. (10)

It follows immediately from the above and (9) that

Y1.2 - Y2.1 = 0,

If we put

we find from (10) that T is a function of y alone,

TI,I + T2.2 = O. (11)

(12)

T=IY=T(y).t

tNote ~ = 'l(1,) = ~(U~.l + U~.2) = ~(y).

(13)
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Equations (10), (11) together with boundary conditions (5) reduce to the same problem
considered in [3]. Assume the form of the strain energy function as

W= A(II-3)" n> 1/2 (14)

where A is a constant and n a parameter. If we now identify n with ~(n + Oln and A with
To(a"Yorll"nl(n + 1) in [2], this problem becomes identical to the problem of the fully plastic
crack under anti-plane shear studied by J. Amazigo[2], based on small strain deformation
theory. This permits us to obtain an exact global solution to this problem by simply making use
of the results in [2]. For n = 1, the strain energy function in (14) reduces to that of a
neo-Hookean material. As n increases, the material corresponding to (14) becomes more
"rubber-elastic". Figure 2 shows the behavior of this class of material in uniaxial tension.
Except when n = 1, the stress-strain curve based on the strain energy function in (14) is of the
pure power type which has infinite (or zero) initial slope in the unstrained state. Consequently,
this idealized stress-strain curve has no linear range. One would expect, therefore, the
subsequent exact results obtained, based on this strain energy function, to be meaningful when
the experimental stress-strain curve is well approximated by the idealized one. This can happen,
say, in the range of moderately large strains where the stress-strain curve is nonlinear or when
the stress-strain curves for some materials have a small linear range.

The Cauchy stresses for this problem, near the crack-tip, are

{
oo31} _ 2An{Jh(8)}(I-(l12"l) ,-(1-112") {- sin 4>} as ,~o
0032 1TAn cos 4>

2Jh(8) _I
0033---'

1T
(15)

where h(8) = (sin 24>12 sin 8), 24> = 8 +arc sin (- [(n - 01n] sin 8) and J is the J integral,t first
found for full nonlinear elasticity by Eshelby [6]. From the exact solution, we find

J = 1Ta(2Anh;"[ - Q(2n l_l)n]

where, from [2]

Q(n) ~ _ n"'2"""N~(n. ~l) Jj ('ll-~) ex" (n + l)/4kyn

(n + 1) exp (n + 0/2y'n1] ("Y2k+l - (2k + Oy'n) exp (n + 0/2y'n(2k + 0

""n ("Y~k-l - a2k-1 s)exp (a2k-.s)
N_(n,s) = TSy'(") ::..k=--=l'-;"";;-- _

n ("Y~k - a2ks)exp (a2d)
k=l

(16)

s= s +(n - 0/2n, (17)

Q(n) is evaluated numerically using the above formulas. Numerical results are given in Table I
to four significant figures.

When n = 1, the expression for oo3a (see (15» reduces to the well-known result involving the
inverse square root, singularity. However, this is somewhat deceptive since the problem is

tJ = L(Wdx, - TJ~n~ ~:: dS) where r is a simple contour in the X, - X, plane.
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Table I.

n Q(2n~ I)
2/3 - 1.3674
1 -0.5
2 -0.1519
3 -0.0820
5 -0.0385

a

Fig. 2. Uniaxial tension curve.

inherently nonlinear even when n = 1, and the stress components must still be interpreted as
belonging to the Cauchy stress tensor. More significantlY, 0'33, like the strain energy density,
always has an ,-1 singularity independent of n and this component is completely absent in a
small strain theory. Another interesting feature about 0'33 is that it remains tensile throughout the
body. Although the physical significance of the component 0'33 for fracture can only be
speculated upon, its tensile character and the nature of its singularity are peculiar nonetheless.

Figure 3 shows that for (xi/a) < (xtla)cr., 0'33 becomes the dominant stress component
compared to 0'32 ahead of the crack-tip. The behavior of 0'32 in front of the crack-tip is shown in
Fig. 4 for different values of the hardening (or softening) parameter n.

In the case where the strain energy density is a function of II and 12, it was noted by
Adkins [4] that two additional non-trivial equilibrium equations appear and they combine to give
a compatibility equation. If the strain energy function is of the form

(18)

where B is also a constant, the exact solution we have obtained stilI applies where now l is
taken to be 2[(aw/aI\) +(aW/aI2)]. This can be verified directly by noting that the compatibility

n' 2/3
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Fig. 3. For (xl/a) < (x,/a)", O'JJ becomes the dominant stress component compared to 0')2 ahead of the
crack-tip at (J = o.
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Fig. 4. Behavior of 0'32 ahead of the crack-tip.

equation is satisfied identically if (18) is used. If the exponents in (18) are different, the exact
solution no longer applies but the dominant singular behavior is determined by the higher of the
two exponents. Finally, we note that solutions of all small strain anti-plane shear problems based
on deformation theory of plasticity, as in [5], are also solutions of the corresponding finite
deformation anti-plane simple shear problems.
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